EL-MANSOURA UNIVERSITY FACULTY OF ENGINEERING DEPT. OF PROD. & MECH. DESIGN ENG. 2nd YEAR STUDENTS TIME ALLOWED: 3 HOURS

FINAL EXAM., DEC. 2010 SYSTEMS OF STRESS ANALYSIS MAXIMUM GRADE: 70 POINTS

SOLVE THE FOLLOWING PROBLEMS; NEAT SKETCHES ARE REQUIRED; ALL PROBLEMS HAVE SAME POINTS; PROBLEM #1:

At a point on a stressed body, the Cartesian components of stress are given by:

$$\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = 0$$
,

$$\tau_{xy} = \tau_{yz} = \tau_{zx} = 60 \text{ MPa}$$

- Determine: (a) the principal stresses and the maximum shear stress,
 - (b) the three stress invariants.

PROBLEM # 2:

A set of Cartesian strain components are:

$$\varepsilon_{xx} = 400 \times 10^{-6},$$

 $\gamma_{xy} = 100 \times 10^{-6},$

$$\varepsilon_{yy} = 300 \times 10^{-6}, \qquad \varepsilon_{zz} = 200 \times 10^{-6},
\gamma_{yz} = 200 \times 10^{-6}, \qquad \gamma_{xz} = 0$$

$$\varepsilon_{77} = 200 \times 10^{-6}$$

$$\gamma_{xy} = 100 \times 10^{-6}$$

$$\gamma_{yz} = 200 \times 10^{-6}$$

$$\gamma_{xz} = 0$$

It is required to transform this given set into a new set of strain components relative to the new set of axes: O x'y'z' where $\theta(x, x') = 90^{\circ}$, $\theta(y, y') = 90^{\circ}$, and $\theta(z, z')=0$.

If $E = 200 \text{ GPA } \& \upsilon = 0.30$,

- a) calculate the Cartesian set of stresses: σ_{xx} , σ_{yy} , σ_{zz} , γ_{xy} , γ_{zy} , γ_{zx} in MPa.
- b) calculate the magnitudes of the principal stresses and the maximum shear stress.

PROBLEM #3:

Outline the photoelastic coating technique of stress analysis giving consideration to:

- (a) Theoretical background of the technique.
- (b) The experimental setup showing sketch of the reflection polariscope.
- (c) Method of analysis giving an illustrative example.
- (d) The difference between isoclinic and isochromatic fringes.

PROBLEM #4:

Explain the principle on which the brittle-coating technique is based. List the advantages and disadvantages of the technique. Sketch the expected cracking pattern for a square plate subjected to a tensile stress in one direction and in two directions.

PROBLEM #5:

Explain the basic background of the Moire method of stress analysis. List the advantages and limitations of the method.

BEST WISHES

Examiner: Prof. Dr. M. Shabara